

lck.django

This library consists of various Django-related routines that extend or modify
the behaviour of the framework:

	lots of composable abstract models to use

	a user activity log app storing users’ IP addresses and user agents (useful
for hunting down multi-accounts)

	a score app enabling users on websites to vote on objects

	a tags app which supports tagging by users and localized tags

	a badges app which enables users to receive badges for actions on the
website

	extensions for settings.py (current directory resolution, namespace
package support, settings profile support)

	typical filters, template tags, form fields, etc.

Complete documentation for the package can be found here:

http://packages.python.org/lck.django/

The latest version can be installed via PyPI [http://pypi.python.org/pypi/lck.django/]:

$ pip install lck.django

or:

$ easy_install lck.django

The source code repository [http://github.com/ambv/kitdjango] and issue
tracker [http://github.com/ambv/kitdjango/issues] are maintained on
GitHub [http://github.com/ambv/kitdjango].

This package bundles some royalty free static images that are useful in almost
every Django project:

	Silk icons 1.3 by FamFamFam [http://www.famfamfam.com/lab/icons/silk/]
- requires attributing the author

	Silk Companion 1 by Damien Guard [http://damieng.com/creative/icons/silk-companion-1-icons] - requires
attributing the author

	Country Flags by SenojFlags.com [http://www.senojflags.com] - requires
using the following HTML:

Country flag image from
Flags of all Countries

For the curious, lck stands for LangaCore Kit. LangaCore is a one man
software development shop of mine.

Note: lck.common requires Python 2.7 because all of its code is using
the so-called four futures (absolute_imports, division, print_function
and unicode_literals). One of the virtues in the creation of this library
is to make the code beautiful. These switches give a useful transitional
state between the old Python 2.x and the new Python 3.x. You should use them as
well.

Note: Since 0.5.0 lck.django requires Django 1.3 because
it makes my monkey-patching efforts much easier. Moreover, 1.3 nicely deprecates
behaviour which I consider ugly.

How to run the tests

The easiest way would be to run:

$ DJANGO_SETTINGS_MODULE="lck.dummy.settings" DJANGO_SETTINGS_PROFILE="test" django-admin.py test

This command runs the internal Django tests as well and that’s fine because
there are monkey patches and other subtleties that should better be tested for
potential breakage.

The dummy project is also used as an example of setting up a Django project.
However, it seems Django tests are not happy with some changes to the settings
so we’re using the test profile (which loads overrides from
settings-test.py) to avoid that.

Change Log

0.8.10

	profile now properly rolls back a failed transaction in
create_a_user_profile_ignoring_dberrors() (fixes initial syncdb’s
superuser creation on PostgreSQL)

	introduced automatic resolution of dependencies for initial migration. If
you use activitylog, badges, score or tags, unless you’re
using the plain auth.User, their initial migrations depend on your
profile module being ready. Migrations currently depend on the initial
migration of your respective ACTIVITYLOG_PROFILE_MODEL,
EDITOR_TRACKABLE_MODEL, SCORE_VOTER_MODEL or TAG_AUTHOR_MODEL. If
those migrations should depend on a different migration or none, new settings
have been added.

0.8.9

	fixed a regression from 0.8.8 in synchronous activitylog models

	dj.choices requirement bumped to 0.9.2 (support for Python 2.6 - 3.3)

	dj.chain requirement bumped to 0.9.2 (support for Python 2.7 - 3.3)

0.8.8

	activitylog now properly encloses database updates in transactions

	activitylog on RQ and Celery now properly handles non-null constraints on
models

	SessionAwareLanguageMiddleware simplified, now simply sets the language
argument in the session. This requires changing middleware order: this
middleware should come after SessionMiddleware and before
LocaleMiddleware.

	The default INSTRUMENTATION_RULE is now simply lambda request: False
which makes TimingMiddleware behave better with front-end caches (if
session is not accessed, Vary: Cookie is not set).

0.8.7

	activitylog now sports new async modes with built-in support for RQ or
Celery workers

	minor performance updates in tags models

0.8.6

	minor performance updates in activitylog middleware. Now behaves better
in low-memory + slow I/O environments.

0.8.5

	whois management command introduced to help find users by session ID

	using User attributes proxied from a Profile instance no longer
causes a query for each call

0.8.4

	TimeTrackable models can now force marking fields as dirty with
mark_dirty() and mark_clean() methods

0.8.3

	concurrent_get_or_create will now raise AssertionErrors if given either
too many fields (e.g. not all of which are unique or compose
a unique-together constraint) or too few (e.g. fields do not form a whole
unique-together constraint). Non-unique fields should be passed in the
defaults keyword argument if needed at object creation time.

	profile now implements automatic profile account synchronization by
registering a post-save signal on User and creating an AUTH_PROFILE_MODEL
instance. A management command for existing applications called
sync_profiles has been created.

	Unit tests converted to unittest2 format

0.8.2

	fixed regression from 0.8.1: removed savepoint support since the updated
concurrent_get_or_create fails miserably on MySQL due to dogdy savepoint
support in MySQL-python [http://pypi.python.org/pypi/MySQL-python]

0.8.1

	concurrent_get_or_create based on get_or_create from Django 1.4.2

	namespace_package_support extended to cover django.utils.translation
as well (previously namespace-packaged projects only worked with I18N if
setup.py develop or pip install -e . was used to install them)

	dj.chain requirement bumped to 0.9.1 (supports more collective methods)

0.8.0

	lazy_chain moved to a separate dj.chain [http://pypi.python.org/pypi/dj.chain/] package. The old interface is thus
deprecated and will be removed in a future version.

	activitylog updates: removed redundant user fields so it works again with
ACTIVITYLOG_PROFILE_MODEL set to auth.User

	EditorTrackable doesn’t require overriding get_editor_from_request
anymore if EDITOR_TRACKABLE_MODEL is set to a profile model instead of
auth.User

	profile admin module includes a predefined ProfileInlineFormSet for
inclusion of profile-tied models to the UserAdmin as inlines

	the dummy application now passes all internal Django unit tests in versions
1.4.0 - 1.4.2

0.7.14

	lazy_chain: the fix from 0.7.13 introduced a different kind of bug,
reverted and fixed properly now. More tests included.

	flatpages now serve content in the default language if the language
requested by the browser is unavailable.

	some internal cleanups

0.7.13

	lazy_chain: when iterating over a slice, the iterator fetched one item too
many. It didn’t yield it back so the result was correct but if using
xfilter() that caused unnecessary iteration.

	dj.choices requirement bumped to 0.9.0 (choices are int subclasses,
unicode(choice) is now equivalent to choice.desc)

0.7.12

	namespace package support now works with Unicode literals in settings.py

	dummy app settings refinements: timing middleware moved down the stack because
it uses the user session, WSGI app definition was wrong

0.7.11

	No code changes

	dj.choices requirement bumped to 0.8.6 (fully compatible with
0.8.5 and significantly improves ChoiceFields)

0.7.10

	BACKLINKS_LOCAL_SITES setting to control if all configured sites should be
considered local upon backlink discovery

	More backlink fixes data model fixes to make it more cross-compatible with
different backends

0.7.9

	Fixed backlink hash generation in activitylog

	activitylog accepts UTF-8 characters in User-Agent headers

	activitylog South migration #0002 now also works on backends with DDL
transactions (e.g. Postgres)

0.7.8

	Fixed South support for custom fields (DefaultTags and
MACAddressField).

0.7.7

	South migrations supported across the board. For existing installations you
should run:

$ python manage.py migrate APP_NAME 0001 --fake
$ python manage.py migrate APP_NAME

where APP_NAME is activitylog, badges, common, flatpages,
profile, score or tags.

	uniqueness constraints in activitylog.models.Backlink and
activitylog.models.UserAgent moved to separate hash fields to make
MySQL happy. South migrations should handle schema evolution regardless of the
backend you’re using.

0.7.6

	Further Django 1.4 compatibility improvements: auto-compelete foreign key
mixin works correctly now

0.7.5

	Django 1.4 compatibility improved

0.7.4

	Django 1.4 USE_TZ = True compatibility

	example settings updated to support new Django 1.4 settings

	User attribute proxying in Profile models rewritten to support all
built-in and custom attributes on the User model

	activitylog.middleware now records IPs and user agents for unauthenticated
requests as well. Possibly a performance hit.

0.7.3

	Added order_by argument to TagStem.objects.get_content_objects()

0.7.2

	choices moved to a separate dj.choices [http://pypi.python.org/pypi/dj.choices/] package. The old interface is thus
deprecated and will be removed in a future version.

0.7.1

	fixed a regression from 0.7.0 in lck.django.score after cleaning up helpers

0.7.0

	lck.django.badges introduced

	lck.django.common cleaned up, lazy_chain significantly upgraded (now
properly supports multiple iterables with filtering, slicing and sorting)

0.6.7

	lck.django.score: send a signal on total score change (allows for caching
strategies on the app side)

	maxid management command introduced: for every registered model returns
the current maximum value for primary keys

0.6.6

	MACAddressField MAC address normalization ignores empty values, supports
Cisco 0000.0000.0000 notation and fixes a minor regression from 0.6.5

	SessionAwareLanguageMiddleware introduced

	a convenient tag getter for taggables, improved compatibility with
EditorTrackable

0.6.5

	more rigorous normalization of MAC addresses in MACAddressField

0.6.4

	ImageModel introduced

	Named models name field extended to 75 characters of length

0.6.3

	fixed an embarassing bug with the human-readable timediff filter

0.6.2

	MACAddressField normalization bug fixed

0.6.1

	buttonable Django admin with ModelAdmin

	“Edit separately” links for ForeignKey fields supported in ModelAdmin

	compressing PyLibMCCache backend in lck.django.cache_backends

	backlinks support in activitylog

	images crushed and optimized

	use Pillow instead of PIL

0.6.0

Oh boy, lots of changes!

	TimeTrackable just got a lot smarter. Includes cache_version
attribute automatically updated on significant changes to the object.
modified gets updated only when there are actual changes to the object.
dirty_fields property shows changed attributes from last save (works also
for objects composed from multiple models, including abstract ones).

Inspired by David Cramer and Simon Willison at EuroPython 2011.

	The dogpile-safe lck.django.cache now supports custom invalidators which
enables invalidation not only by time but also by e.g. model changes (think
TimeTrackable.cache_version).

	Settings profile support now requires a modified manage.py script in the
Django project. This is forced by the unfortunate design of how Django loads
settings.

	Activity logging moved to its own app, lck.activitylog, which now also
tracks IPs and user agents of logged-in visitors (useful in hunting
multi-accounts).

	Introduced a SavePrioritized abstract model which adds priorities to
saves on models. Various parts of the application can specify which priority
they use. If they update an attribute which was first saved by something with
higher priority, the update is silently ignored.

	Introduced a concurrency-aware variant of the popular
Model.objects.get_or_create (unsurprisingly called
concurrent_get_or_create)

	Introduced a commit_on_success variant that supports nesting
(unsurprisingly called nested_commit_on_success)

	Introduced BasicAuthMiddleware for simplistic private URL protecting.

	EditorTrackable is now safe in terms of foreign key cascading (content
authored or modified by a user won’t get deleted after this user is removed
from the DB). Plus some nice admin refinements.

	Now TimingMiddleware doesn’t break other middlewares using
process_view() and is generally smarter.

	Added X-Slo header in responses for TimingMiddleware.

	render() now calculates and emits ETags based on the rendering output.

	typical_handler() can now redirect_on_success.

	Links from the BBCode filter now open in a new window and have
rel="nofollow" set.

	Introduced a {%settings KEY%} templatetag.

	Introduced a {%git_version%} templatetag which returns a short string
useful to present as an app version. This is based on the latest commit in
the Git repository where the Django project lies in.

	The cycle_filter template filter now supports explicit counter settings
and incrementation.

	Introduced template filters converting to and from Base64.

	Introduced JQuery UI and JQueryMobile integrated radio widgets.

	Improved documentation.

	More complete translations.

0.5.8

	Simplistic TimingMiddleware introduced.

	Profiles based on BaseProfile now return self for get_profile().

	Trophy icons added.

	Console tag library introduced with the {%color%} tag.

	Allow rendering non-request contexts.

	Choices.ToNames decorator introduced.

	Pre-importing in manage.py shell works also for models with
a custom``app_model``.

0.5.7

	EditorTrackable introduced

	Choices can be rendered in grouped form. Currently requires adding
'--keyword=Group:2 ' to xgettext invocations in
django/core/managemenet/commands/makemessages.py. Cleaning that up is planned
for 0.6.0.

	typical_handler works now with forms w/o a save() method

	upperfirst filter introduced: ups only the first character

	Square thumbnails for wide images now work properly

	moved contents of helpers to common (enables i18n and cleans up the API), the
helpers module is therefore deprecated

	some i18n updates

0.5.6

	in the thumbnail filter, support for automatic cropping to square introduced

	minor translation updates

0.5.5

	group members inherit shifted attributes

0.5.4

	minor updates to PolishDateWidget

0.5.3

	AvatarSupport abstract model for custom avatars. GravatarSupport can
be used as fallback or independently.

	typical_handler now properly supports file uploads

	bugfixes: objects without any score don’t cause exceptions anymore

	leftovers from namespace changes cleaned up

0.5.2

	monkey patches of core Django annotated and regrouped for easier management in
the future (yup, more to come)

	a stats calculator

	minor bugfixes

0.5.1

	tags now support models with custom managers

	for Named and Titled models a read-only name_urlencoded and
title_urlencoded properties were introduced. Useful as arguments in
template tags.

	support for setting additional attributes on choices using an unholy <<
operator overload

	in tags, support for getting objects marked with specific stems

0.5.0

	migrated to the lck namespace from langacore.kit

	migrated licensing from GPL 3 to MIT

	bumped the trove from alpha status to beta, the code is in production for over
a year now

Ancient history

	No proper change log was kept before 0.5.0

lck.django

	Overview
	Module details

	Choices objects

	Extensions for settings.py
	current_dir_support

	namespace_package_support

	profile_support

	Footnotes

	Custom manage.py commands

	Filters

	License

	TODO
	Roadmap

	Random ideas

Indices and tables

	Index

	Module Index

	Search Page

Overview

This library consists of a number of reusable Django apps and a set of common
functionality that enables them to work.

Module details

For more detailed view on the modules, see the documentation below.

	cache
	

	choices
	

	filters
	

	common
	

	common.forms
	

	common.middleware
	

	common.models
	

	common.templatetags.bbcode
	

	common.templatetags.converters
	

	common.templatetags.cycle_filter
	

	common.templatetags.strings
	

	common.templatetags.thumbnail
	

	activitylog.middleware
	

	activitylog.models
	

	badges.models
	

	profile.models
	

	score.models
	

	score.templatetags.lckd_score
	

	tags.helpers
	

	tags.models
	

Choices objects

This is a much clearer way to specify choices for fields in models and forms.
Current documentation can be found at the dj.choices PyPI page [http://pypi.python.org/pypi/dj.choices].

Note

The legacy lck.django.choices namespace will be removed in lck.django
1.0.

Filters

The filters below are usable directly from pure Python code and obviously work
as templatetags as well:

	nbsp
	

	numberify
	

	nullify
	

	slugify
	

	strike_empty
	

	thumbnail
	

	timediff
	

	title
	

	transliterate
	

To use these filters in your source code, simply import them from
lck.django.filters. To use them as templatetags, add the
lck.django.common app to INSTALLED_APPS within your
settings.py and in the specific template use:

{%load LIB_NAME%}

where LIB_NAME is the templatetag library name for the specific filter
(available in the filter description). For instance, for strike_empty or
title it would be:

{%load strings%}

There are more filters whose implementation makes them useful only as
templatetags. These include:

	bbcode.bbcode
	

Choices objects

This is a much clearer way to specify choices for fields in models and forms.
Current documentation can be found at the dj.choices PyPI page [http://pypi.python.org/pypi/dj.choices].

Note

The legacy lck.django.choices namespace will be removed in lck.django
1.0.

Extensions for settings.py

One of the most often customized parts of a Django project is settings.py.
To ease the process and protect against possible mistakes when doing the same
exact modification for the n-th time, a set of extensions for settings.py
was developed. The extensions are activated by importing them and executing:

from lck.django import current_dir_support
execfile(current_dir_support)

This is done so to enable the extensions access to the current local namespace
of settings.py. If anyone knows a more elegant way to do that, let me know.
For now this seems a good approach though.

current_dir_support

This extension injects a CURRENT_DIR variable into settings.py so it is
available from the moment of definitions onwards. CURRENT_DIR in this
context means the root of the project (“current” because most of the time this
is the same dir where settings.py resides). An additional feature is that it
is always ending with os.sep so it’s perfectly safe to do something like:

from lck.django import current_dir_support
execfile(current_dir_support)

(...)

MEDIA_ROOT = CURRENT_DIR + 'media/'

Moreover, CURRENT_DIR gets set properly also for the projects that use
a package for specifying settings, e.g. a structure like that:

project_dir
├── __init__.py
├── an_app
│ ├── __init__.py
│ └── ...
├── an_app
│ ├── __init__.py
│ └── ...
├── other_app
│ ├── __init__.py
│ └── ...
├── settings
│ ├── __init__.py
│ └── local.py
└── yet_other_app
 ├── __init__.py
 └── ...

To enable this extension, import and execute it in the settings.py context
(at the very beginning of the config file is recommended since
CURRENT_DIR is available only after the extension’s initialization).

namespace_package_support

This extension monkey-patches [1] Django so that is supports namespace
packages. Not all places are covered though so if you spot some feature where
namespace packages still don’t work, file an issue using our issue tracker [http://github.com/lckdjango/issues].

To enable this extension, import and execute it in the settings.py context
(anywhere within the config file is fine):

from lck.django import namespace_package_support
execfile(namespace_package_support)

Features supported:

	custom commands for manage.py loaded correctly from apps within namespace
packages; since 0.1.8

profile_support

Splitting global settings from instance-specific ones is also a very frequent
task that most Django projects implement in one way or another. There are many
reasons why such separation is desirable but the most important ones are:

	if one global settings file is not enough to run the project, it forces the
administrator deploying every instance to specify the local settings. This way
no incompatible settings are used by default

	when global settings are kept separate, adding, deleting or editing entries
doesn’t cause conflicts while using source code version control systems [2]

So, how do you get to split your settings.py file? The simplest approach is
to create a file with the local settings as a module and just import it at the
end of the global one. This approach has two significant drawbacks: you cannot
use/edit variables specified in the global settings and the name of the local
module is now hard-coded within the global file.

Enter profile_support! With this extension you can have several
local-specific settings modules which are executed in the global settings
context. This means you can within your local settings do things like:

INSTALLED_APPS += (
 'debug_toolbar',
)

MEDIA_ROOT = CURRENT_DIR + 'static'

where you add the debug toolbar to the active apps (notice the += operator)
and CURRENT_DIR is the one calculated by enabling current_dir_support.
To enable profiles, just add these lines at the very end of your
settings.py file:

from lck.django import profile_support
execfile(profile_support)

By default, this enables loading settings found in settings-local.py. There
are times when you need more than one config profile though, for instance:

	you might want to have a very verbose debugging configuration for squashing
the most persistent of bugs; most of the time however this kind of verbosity
wouldn’t be desirable)

	the live instance of your project is using a database user without database
schema modification rights but you still want to be able to run manage.py
syncdb and manage.py migrate

	you need to specify separate settings for your unit testing needs

Without profile_support you would create some “toggle” variables like
SYNC_DB or VERBOSE_DEBUG and use if/else within the settings.
Thanks to profile_support you can treat settings.py files like regular
configuration files without any logic and just use different local profiles. To
change to a profile different from “local” when running a command, just
specify the DJANGO_SETTINGS_PROFILE environment variable:

DJANGO_SETTINGS_PROFILE=syncdb python manage.py migrate

In that case, the local settings will be loaded from settings-syncdb.py and
not from settings-local.py.

If you use profiles heavily, the root project folder gets quite cluttered with
settings-*.py files. In that case you might switch to package based
configuration. Just make a directory called settings, move your existing
settings.py to settings/__init__.py and your settings-*.py files to
settings/*.py. Then your project tree will look something like the one on
the diagram in the current_dir_support description above.

Footnotes

	[1]	Yup, in the world of Python that’s considered dangerous and a sign of bad
design. Here it’s simply a sane way to overcome Django core development inertia.
Go ahead and ask for namespace package support in vanilla Django.

	[2]	May I kindly suggest Git [http://git-scm.com/] or Mercurial [http://mercurial.selenic.com/]?

Custom manage.py commands

By adding lck.django.common to your INSTALLED_APPS you get
some additional second-level commands for manage.py:

	shell: a version of the original manage.py shell [http://docs.djangoproject.com/en/dev/ref/django-admin/#shell] command for
lazy people: is using bpython [http://bpython-interpreter.org/] if
installed and imports all models automatically

Note

These commands require namespace_package_support.

Filters

The filters below are usable directly from pure Python code and obviously work
as templatetags as well:

	nbsp
	

	numberify
	

	nullify
	

	slugify
	

	strike_empty
	

	thumbnail
	

	timediff
	

	title
	

	transliterate
	

To use these filters in your source code, simply import them from
lck.django.filters. To use them as templatetags, add the
lck.django.common app to INSTALLED_APPS within your
settings.py and in the specific template use:

{%load LIB_NAME%}

where LIB_NAME is the templatetag library name for the specific filter
(available in the filter description). For instance, for strike_empty or
title it would be:

{%load strings%}

There are more filters whose implementation makes them useful only as
templatetags. These include:

	bbcode.bbcode
	

License

Copyright (C) 2010, 2011 by Łukasz Langa

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the Software), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

TODO

Roadmap

Version 0.9

Convert unit tests to base on unittest2. Create introductory material for common
models, activitylog, score and tags: tutorials, examples and FAQ.

Version 1.0

Drop support for Django 1.3.

Separate some of the more useful things as their own packages. Currently these
are already separated:

	dj.chain [http://pypi.python.org/pypi/dj.chain]

	dj.choices [http://pypi.python.org/pypi/dj.choices]

These would be great to separate:

	cache (needs updating first)

	namespace package support (so that all other dj.* packages work out of the box
for users)

	thumbnail filter

Make all separated packages compatible with Python 3.x.

Unit test the rest, remove what’s supported out of the box in Django 1.4.

Clean up forms.

Random ideas

	make the timing middleware store the results somewhere somehow

	custom inlines which set lck-specific readonly fields by default

	future date filter for the admin

	Migrate configuration of lck.django.cache to the 1.3+ variant

	Base django-admin.py shell on 1.4

	Deprecate execfile()-based settings hacking

	There are not enough unit tests
	in particular, py.test is used for the existing tests which makes proper
unit testing for Django-specific bits harder. Struggling with
django-pytest did not produce any results as of yet.

	No examples in the code

	Bits documented only by means of API, some proper introduction would be handy:
	forms

	models

	score

	tags

	No FAQ, Tutorial

Index

lck.django.common.templatetags.bbcode

Functions

lck.django.cache

Functions

lck.django.common.templatetags.thumbnail

lck.django.common.middleware

Classes

lck.django.tags.helpers

Functions

lck.django.score.models

Classes

lck.django.tags.models

Classes

lck.django.common.templatetags.strings

Functions

lck.django.activitylog.middleware

Classes

lck.django.common.templatetags.cycle_filter

lck.django.common.templatetags.converters

Functions

lck.django.score.templatetags.lckd_score

Functions

lck.django.common

Rendering functions

Decorators

Misc

Note

The legacy lazy_chain name will be removed in lck.django 1.0. Use
dj.chain [http://pypi.python.org/pypi/dj.chain].

lck.django.profile.models

Classes

lck.django.common.forms

Classes

lck.django.badges.models

Functions

Classes

lck.django.activitylog.models

Classes

lck.django.filters

Functions

lck.django.choices

Note

The legacy lck.django.choices namespace will be removed in lck.django
1.0. Use dj.choices [http://pypi.python.org/pypi/dj.choices].

Classes

Predefined Choices

lck.django.common.models

Classes

How To Install

Install in Sphinx

Copy this directory into the sphinx/templates directory where Shpinx is installed. For example, a standard install of sphinx on Mac OS X is at /Library/Python/2.6/site-packages/Sphinx-0.6.3-py2.6.egg/

Install Somewhere Else

If you want to install this theme somewhere else, you will have to modify the conf.py file.

templates_path = ['/absolute/path/to/dir/','relative/path/']

Install Directly in Your Documentation

If you want to include the files directly in the documentation, so another person can build your documentation, it is easy.

	Copy over everything in the static directory into the _static directory of your documentation’s source folder.

	Copy the layout.html file into the _templates directory of your documentation’s source folder.

	Alter your conf.py

html_theme = 'basic'

instead of 'ADCtheme'.

Making Sphinx Use the Theme

If you aren’t installing the files directly into your documentation, edit the conf.py file and make the following setting:

html_theme = 'ADCtheme'

Screen Shots

[image: http://github.com/coordt/ADCtheme/raw/master/static/scrn1.png]
[image: http://github.com/coordt/ADCtheme/raw/master/static/scrn2.png]

To Do

	Gotta get the javascript working so the Table of Contents is hide-able.

	Probably lots of css cleanup.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down.png

_static/up.png

nav.xhtml

 Table of Contents

 		lck.django

 		Overview

 		Module details

 		Choices objects

 		Filters

 		Choices objects

 		Extensions for settings.py

 		current_dir_support

 		namespace_package_support

 		profile_support

 		Footnotes

 		Custom manage.py commands

 		Filters

 		License

 		TODO

 		Roadmap

 		Version 0.9

 		Version 1.0

 		Random ideas

_static/down-pressed.png

_static/up-pressed.png

